Economics at your fingertips  

Identification and Estimation Using a Density Discontinuity Approach

Hugo Jales () and Zhengfei Yu

A chapter in Regression Discontinuity Designs, 2017, vol. 38, pp 29-72 from Emerald Publishing Ltd

Abstract: Abstract This chapter reviews recent developments in the density discontinuity approach. It is well known that agents having perfect control of the forcing variable will invalidate the popular regression discontinuity designs (RDDs). To detect the manipulation of the forcing variable, McCrary (2008) developed a test based on the discontinuity in the density around the threshold. Recent papers have noted that the sorting patterns around the threshold are often either the researcher’s object of interest or may relate to structural parameters such as tax elasticities through known functions. This, in turn, implies that the behavior of the distribution around the threshold is not only informative of the validity of a standard RDD; it can also be used to recover policy-relevant parameters and perform counterfactual exercises.

Keywords: Density function; discontinuity; density jump; sorting; effect structure; C14; C21 (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (11) Track citations by RSS feed

Downloads: (external link) ... RePEc&WT.mc_id=RePEc (text/html)
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This item can be ordered from
Emerald Group Publishing, Howard House, Wagon Lane, Bingley, BD16 1WA, UK
http://www.emeraldgr ... ies.htm?id=0731-9053

Access Statistics for this chapter

More chapters in Advances in Econometrics from Emerald Publishing Ltd
Bibliographic data for series maintained by Charlotte Maiorana ().

Page updated 2023-01-13
Handle: RePEc:eme:aecozz:s0731-905320170000038003