Using Artificial Intelligence Techniques for Economic Time Series Prediction
Utku Kose
A chapter in Contemporary Issues in Behavioral Finance, 2019, vol. 101, pp 13-28 from Emerald Group Publishing Limited
Abstract:
It is possible to see effective use of Artificial Intelligence-based systems in many fields because it easily outperforms traditional solutions or provides solutions for the problems not previously solved. Prediction applications are a widely used mechanism in research because they allow for forecasting of future states. Logical inference mechanisms in the field of Artificial Intelligence allow for faster and more accurate and powerful computation. Machine Learning, which is a sub-field of Artificial Intelligence, has been used as a tool for creating effective solutions for prediction problems. In this chapter the authors will focus on employing Machine Learning techniques for predicting data for future states of economic using techniques which include Artificial Neural Networks, Adaptive Neuro-Fuzzy Inference System, Dynamic Boltzmann Machine, Support Vector Machine, Hidden Markov Model, Bayesian Learning on Gaussian process model, Autoregressive Integrated Moving Average, Autoregressive Model (Poggi, Muselli, Notton, Cristofari, & Louche, 2003), and K-Nearest Neighbor Algorithm. Findings revealed positive results in terms of predicting economic data.
Keywords: Economic time series; artificial intelligence; machine learning; time series prediction; intelligent systems; intelligent algorithms (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.110 ... 9-375920190000101002
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (application/pdf)
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eme:csefzz:s1569-375920190000101002
DOI: 10.1108/S1569-375920190000101002
Access Statistics for this chapter
More chapters in Contemporary Studies in Economic and Financial Analysis from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().