Intelligent Sliding Surface Design Methods Applied to an IBVS System for Robot Manipulators
Tolga Yuksel
A chapter in Applications from Engineering with MATLAB Concepts from IntechOpen
Abstract:
The controller of an image-based visual servoing (IBVS) system is based on the design of the kinematic velocity controller which guarantees exponentially decreasing feature errors. In fact, this controller is using the sliding surface approach of classical Sliding Mode Control (SMC). In SMC, the system dynamics are taken into consideration and the sliding surface is designed according to the physical limitations and desired convergence time. Different design methods are proposed in the literature using adaptive gain, time variations, nonlinear functions, and intelligent methods like fuzzy logic (FL) and genetic algorithms (GA). In this study, five different sliding surface designs with analytical and intelligent methods are modified and applied to an IBVS system to expand these designs to visually guided robot manipulators. The design methods are selected by their convenience and applicability to these types of manipulator systems. To show the performance of the design methods, an IBVS system with six-DOF manipulator is simulated using MATLAB Simulink, Robotics Toolbox, Machine Vision Toolbox, and Fuzzy Logic Toolbox. A comparison of these design methods according to convergence time, error cost function, defined parameters, and motion characteristics is given.
Keywords: Sliding surface; visual servoing; robot manipulators; fuzzy logic; Simulink (search for similar items in EconPapers)
JEL-codes: C60 (search for similar items in EconPapers)
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.intechopen.com/chapters/50476 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ito:pchaps:100276
DOI: 10.5772/63046
Access Statistics for this chapter
More chapters in Chapters from IntechOpen
Bibliographic data for series maintained by Slobodan Momcilovic ().