Standard Calculation of Fault Current Contribution of Doubly Fed Induction Generator-Based Wind Turbine
Ahmed El-Naggar
A chapter in Wind Turbines - Design, Control and Applications from IntechOpen
Abstract:
The fault current contribution of the doubly fed induction generator-based wind turbines (DFIG-WTs) is dictated by a combination of factors, including the electrical parameters of the machine and the controller configuration of the converters. A detailed manufacturer-based simulation model for DFIG-WT was used for detailed analysis of the controller influences on short-circuit parameters. Based on the analysis, new approximate expressions of the short-circuit parameters were introduced and a new mathematical model of the short-circuit current were developed. The mathematical models and the expressions were later validated using nonlinear optimization for parameter extraction. Subsequently, a new method was introduced for fault current contribution calculation in a simple and reliable way similar to IEC-60909. The method is based on linearization and a newly introduced correction factor that takes the influence of the controller into account. Finally, the new introduced method was tested on a small wind farm and the results show better accuracy in comparison with IEC-60909.
Keywords: DFIG-WT; short-circuit; transient impedance; fault; time constant (search for similar items in EconPapers)
JEL-codes: Q20 Q40 (search for similar items in EconPapers)
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.intechopen.com/chapters/50657 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ito:pchaps:102609
DOI: 10.5772/63450
Access Statistics for this chapter
More chapters in Chapters from IntechOpen
Bibliographic data for series maintained by Slobodan Momcilovic ().