EconPapers    
Economics at your fingertips  
 

Micromechanical Analysis of Polymer Fiber Composites under Tensile Loading by Finite Element Method

Ezgi Gunay

A chapter in Perusal of the Finite Element Method from IntechOpen

Abstract: In this chapter, the critical stress transfer factors of interface material have been studied under tensile loading. The polypropylene (PP) short fiber was embedded into the polypropylene co-ethylene (PPE) cylindrical interface first and then into the matrix material. Modified interface PPE material with lower elastic constant value than matrix material was used in our study. In this chapter, interface parameters affecting the stress transfer mechanism have been investigated. Finite element analysis (FEA) package (Ansys) has been used in the numerical modeling by using representative volume element (RVE). Tensile load was applied on one side of the composite cylinder as the other side of the composite is fixed. The critical stress-strain distributions are determined and presented by curves and tables for different fiber and interface diameters. For verification, the equivalent elastic material constants have been compared with the analytical solution and the results have been appropriate.

Keywords: FEA; representative volume element; fiber composite; stress transfer; interface; polymer (search for similar items in EconPapers)
JEL-codes: C60 (search for similar items in EconPapers)
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.intechopen.com/chapters/52379 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ito:pchaps:105963

DOI: 10.5772/65002

Access Statistics for this chapter

More chapters in Chapters from IntechOpen
Bibliographic data for series maintained by Slobodan Momcilovic ().

 
Page updated 2025-04-09
Handle: RePEc:ito:pchaps:105963