EconPapers    
Economics at your fingertips  
 

Modeling and Simulation of Task Allocation with Colored Petri Nets

Mildreth Alcaraz-Mejia, Raul Campos-Rodriguez and Marco Caballero-Gutierrez

A chapter in Computer Simulation from IntechOpen

Abstract: The task allocation problem is a key element in the solution of several applications from different engineering fields. With the explosion of the amount of information produced by the today Internet-connected solutions, scheduling techniques for the allocation of tasks relying on grids, clusters of computers, or in the cloud computing, is at the core of efficient solutions. The task allocation is an important problem within some branch of the computer sciences and operations research, where it is usually modeled as an optimization of a combinatorial problem with the inconvenience of a state explosion problem. This chapter proposes the modeling of the task allocation problem by the use of Colored Petri nets. The proposed methodology allows the construction of compact models for task scheduling problems. Moreover, a simulation process is possible within the constructed model, which allows the study of some performance aspects of the task allocation problem before any implementation stage.

Keywords: colored Petri nets; task allocation problem; modeling and simulation; distributed computing (search for similar items in EconPapers)
JEL-codes: C60 (search for similar items in EconPapers)
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.intechopen.com/chapters/54727 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ito:pchaps:116415

DOI: 10.5772/67950

Access Statistics for this chapter

More chapters in Chapters from IntechOpen
Bibliographic data for series maintained by Slobodan Momcilovic ().

 
Page updated 2025-04-09
Handle: RePEc:ito:pchaps:116415