EconPapers    
Economics at your fingertips  
 

Data Simulation and Trend Removal Optimization Applied to Electrochemical Noise

Victor Martinez-Luaces and Mauricio Ohanian

A chapter in Recent Trends in Computational Science and Engineering from IntechOpen

Abstract: A well-known technique, electrochemical noise analysis (ENA), measures the potential fluctuations produced by kinetic variations along the electrochemical corrosion process. This practice requires the application of diverse signal processing methods. Therefore, in order to propose and evaluate new methodologies, it is absolutely necessary to simulate signals by computer data generation using different algorithms. In the first approach, data were simulated by superimposing Gaussian noise to nontrivial trend lines. Then, several methods were assessed by using this set of computer-simulated data. These results indicate that a new methodology based on medians of moving intervals and cubic splines interpolation show the best performance. Nevertheless, relative errors are acceptable for the trend but not for noise. In the second approach, we used artificial intelligence for trend removal, combining an interval signal processing with backpropagation neural networks. Finally, a non-Gaussian noise function that simulates non-stationary pits was proposed and all detrending methods were re-evaluated, resulting that when increasing difference between trend and noise, the accuracy of the artificial neural networks (ANNs) was reduced. In addition, when polynomial fitting, moving average removal (MAR) and moving median removal (MMR) were evaluated, MMR yielded best results, though it is not a definitive solution.

Keywords: electrochemical noise; data simulation; signal processing; trend removal methods; noise filtering; artificial neural networks (search for similar items in EconPapers)
JEL-codes: C60 (search for similar items in EconPapers)
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.intechopen.com/chapters/59389 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ito:pchaps:132186

DOI: 10.5772/intechopen.73831

Access Statistics for this chapter

More chapters in Chapters from IntechOpen
Bibliographic data for series maintained by Slobodan Momcilovic ().

 
Page updated 2025-04-09
Handle: RePEc:ito:pchaps:132186