Quantum Two-Level Model for Excitonic Solar Cells
Tahereh Nemati Aram and
Didier Mayou
A chapter in Solar Panels and Photovoltaic Materials from IntechOpen
Abstract:
While improving the performance of excitonic solar cells (XSCs) has been a central effort of the scientific community for many years, theoretical approaches facilitating the understanding of electron-hole interaction, recombination and electron-phonon coupling effects on the cell performance are still needed. We present a novel simple model which is based on the quantum scattering theory, in particular on the Lippmann-Schwinger equation; this minimizes the complexity of the problem while providing useful and non-trivial insight into the mechanism governing photocell operation. In this formalism, both exciton pair creation and dissociation are treated in the energy domain, and therefore there is access to detailed spectral information, which can be used as a framework to interpret the charge separation yield. Our analysis helps to optimize the charge separation process and the energy transfer in excitonic solar cells.
Keywords: quantum model; two-level system; electron-hole interaction; electron-phonon coupling; charge separation yield (search for similar items in EconPapers)
JEL-codes: Q20 Q40 (search for similar items in EconPapers)
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.intechopen.com/chapters/59760 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ito:pchaps:141707
DOI: 10.5772/intechopen.74996
Access Statistics for this chapter
More chapters in Chapters from IntechOpen
Bibliographic data for series maintained by Slobodan Momcilovic ().