EconPapers    
Economics at your fingertips  
 

Charge-Controlled Memristor Grid for Edge Detection

Arturo Sarmiento Reyes and Yojanes R. Velasquez

A chapter in Advances in Memristor Neural Networks - Modeling and Applications from IntechOpen

Abstract: Nonlinear resistive grids have been extensively used in the past for achieving image filtering, focused on both smoothing and edge detection, by resorting to the nonlinear constitutive branch relationships of the elements in the array in order to carry out in fact a minimization algorithm. In this chapter, a specially tailored fully analytical charge-controlled memristor model is introduced and used in a memristive grid in order to handle the edge detection. The performance of the grid has been tested on a set of 500 images (clean and noisy) and shows an excellent agreement with the outcomes produced by humans.

Keywords: memristor modeling; memristive grids; symbolic memristor modeling; edge-detection; image processing (search for similar items in EconPapers)
JEL-codes: C60 (search for similar items in EconPapers)
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.intechopen.com/chapters/62144 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ito:pchaps:151786

DOI: 10.5772/intechopen.78610

Access Statistics for this chapter

More chapters in Chapters from IntechOpen
Bibliographic data for series maintained by Slobodan Momcilovic ().

 
Page updated 2025-03-31
Handle: RePEc:ito:pchaps:151786