Fault Diagnosis of Hybrid Computing Systems Using Chaotic-Map Method
Nageswara Rao and
Bobby Philip
A chapter in Fault Detection and Diagnosis from IntechOpen
Abstract:
Computing systems are becoming increasingly complex with nodes consisting of a combination of multi-core central processing units (CPUs), many integrated core (MIC) and graphics processing unit (GPU) accelerators. These computing units and their interconnections are subject to different classes of hardware and software faults, which should be detected to support mitigation measures. We present the chaotic-map method that uses the exponential divergence and wide Fourier properties of the trajectories, combined with memory allocations and assignments to diagnose component-level faults in these hybrid computing systems. We propose lightweight codes that utilize highly parallel chaotic-map computations tailored to isolate faults in arithmetic units, memory elements and interconnects. The diagnosis module on a node utilizes pthreads to place chaotic-map threads on CPU and MIC cores, and CUDA C and OpenCL kernels on GPU blocks. We present experimental diagnosis results on five multi-core CPUs; one MIC; and, seven GPUs with typical diagnosis run-times under a minute.
Keywords: fault diagnosis; hybrid systems; chaotic maps; multi-core CPU; GPU (search for similar items in EconPapers)
JEL-codes: C60 (search for similar items in EconPapers)
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.intechopen.com/chapters/62919 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ito:pchaps:158373
DOI: 10.5772/intechopen.79978
Access Statistics for this chapter
More chapters in Chapters from IntechOpen
Bibliographic data for series maintained by Slobodan Momcilovic ().