New Variations of the Online k -Canadian Traveler Problem: Uncertain Costs at Known Locations
Davood Shiri and
F. Sibel Salman
A chapter in Probability, Combinatorics and Control from IntechOpen
Abstract:
In this chapter, we study new variations of the online k-Canadian Traveler Problem (k-CTP) in which there is an input graph with a given source node O and a destination node D. For a specified set consisting of k edges, the edge costs are unknown (we call these uncertain edges). Costs of the remaining edges are known and given. The objective is to find an online strategy such that the traveling agent finds a route from O to D with minimum total travel cost. The agent learns the cost of an uncertain edge, when she arrives at one of its end-nodes and decides on her travel path based on the discovered cost. We call this problem the online k-Canadian Traveler Problem with uncertain edges. We analyze both the single-agent and the multi-agent versions of the problem. We propose a tight lower bound on the competitive ratio of deterministic online strategies together with an optimal online strategy for the single-agent version. We consider the multi-agent version with two different objectives. We suggest lower bounds on the competitive ratio of deterministic online strategies to these two problems.
Keywords: multi-agent k-CTP; online strategies; deterministic strategies; competitive ratio; undirected graphs (search for similar items in EconPapers)
JEL-codes: C60 (search for similar items in EconPapers)
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.intechopen.com/chapters/68717 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ito:pchaps:203205
DOI: 10.5772/intechopen.88741
Access Statistics for this chapter
More chapters in Chapters from IntechOpen
Bibliographic data for series maintained by Slobodan Momcilovic ().