Dependent Dirichlet Processes for Analysis of a Generalized Shared Frailty Model
Chong Zhong,
Zhihua Ma,
Junshan Shen and
Catherine Chunling Liu
A chapter in Computational Statistics and Applications from IntechOpen
Abstract:
Bayesian paradigm takes advantage of well-fitting complicated survival models and feasible computing in survival analysis owing to the superiority in tackling the complex censoring scheme, compared with the frequentist paradigm. In this chapter, we aim to display the latest tendency in Bayesian computing, in the sense of automating the posterior sampling, through a Bayesian analysis of survival modeling for multivariate survival outcomes with the complicated data structure. Motivated by relaxing the strong assumption of proportionality and the restriction of a common baseline population, we propose a generalized shared frailty model which includes both parametric and nonparametric frailty random effects to incorporate both treatment-wise and temporal variation for multiple events. We develop a survival-function version of the ANOVA dependent Dirichlet process to model the dependency among the baseline survival functions. The posterior sampling is implemented by the No-U-Turn sampler in Stan, a contemporary Bayesian computing tool, automatically. The proposed model is validated by analysis of the bladder cancer recurrences data. The estimation is consistent with existing results. Our model and Bayesian inference provide evidence that the Bayesian paradigm fosters complex modeling and feasible computing in survival analysis, and Stan relaxes the posterior inference.
Keywords: ANOVA DDP; dependent treatments; multivariate survival outcomes; recurrence; Stan (search for similar items in EconPapers)
JEL-codes: C10 (search for similar items in EconPapers)
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.intechopen.com/chapters/79845 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ito:pchaps:245402
DOI: 10.5772/intechopen.101502
Access Statistics for this chapter
More chapters in Chapters from IntechOpen
Bibliographic data for series maintained by Slobodan Momcilovic ().