Moth Species Caught by Ultraviolet and Visible Light Sources in Connection with Their Wingspan
Levente Hufnagel,
Laszlo Nowinszky,
Lionel Hill,
Janos Puskas and
Karoly Tar
A chapter in Light Pollution, Urbanization and Ecology from IntechOpen
Abstract:
For a long time, researchers have compared light traps operating with different light sources. According to the results, ultraviolet lights often performed better than visible light sources. In the present study, we examine the wingspan of macrolepidoptera species in relation to the catch result of visible (visible) and BL traps in choice and no-choice situations using data from the Hungarian light-trap network. We used the catch data of 19 light-trap stations from 1962 to 1963. Up to 18 stations belonged to the national network and the last one was in Nagytétény. We processed data of 381 species of the 18 light-traps data of the national network and data of 222 species from the light traps of Nagytétény. The data of the wingspan of the different macrolepidoptera species we collected from the websites of UKmoths (http://ukmoths.org.uk/index.php), and Guide to the Butterflies and Moths of Hungary (macrolepidoptera) (http://www.macrolepidoptera.hu). We summarised for each light-trap station and each trap type the number of the macrolepidopteran species and individuals caught from different generations. Then, using the Mann-Whitney test, we checked for species the number of individuals captured by visible and BL traps, and the difference of the level of significance. We summarised the wingspan data of all the 381 species, the more efficient light source for each species in a no-choice situation at multiple sites and for the single site of Nagytétény the more efficient light source for species detected there. The BL trap seems most efficient for operation for plant protecting purposes, despite the fact that their use is far more problematic. Insect species are not only endangered by light trapping but also by the light pollution of urban areas. Our results confirm that the different light sources should incur mortality on different species to differing levels. Such differential mortality from artificial light sources could disturb the balance of life in biological communities.
Keywords: moths; wingspan; light-trap; visible and BL light sources (search for similar items in EconPapers)
JEL-codes: Q52 (search for similar items in EconPapers)
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.intechopen.com/chapters/80625 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ito:pchaps:250989
DOI: 10.5772/intechopen.102718
Access Statistics for this chapter
More chapters in Chapters from IntechOpen
Bibliographic data for series maintained by Slobodan Momcilovic ().