EconPapers    
Economics at your fingertips  
 

Planning Tools for the Integration of Renewable Energy Sources Into Low- and Medium-Voltage Distribution Grids

Jean-Francois Toubeau, Francois Vallee, Jacques Lobry, Vasiliki Klonari and Zacharie De Greve

A chapter in Renewable Energy - Utilisation and System Integration from IntechOpen

Abstract: This chapter presents two probabilistic planning tools developed for the long-term analysis of distribution networks. The first one focuses on the low-voltage (LV) level and the second one addresses the issues occurring in the medium-voltage (MV) grid. Both tools use Monte Carlo algorithms in order to simulate the distribution network, taking into account the stochastic nature of the loading parameters at its nodes. Section 1 introduces the probabilistic framework that focuses on the analysis of LV feeders with distributed photovoltaic (PV) generation using quarter-hourly smart metering data of load and generation at each node of a feeder. This probabilistic framework is evaluated by simulating a real LV feeder in Belgium considering its actual loading parameters and components. In order to demonstrate the interest of the presented framework for the distribution system operators (DSOs), the same feeder is then simulated considering future scenarios of higher PV integration as well as the application of mitigation solutions (reactive power control, P/V droop control thanks to a local management of PV inverters, etc.) to actual LV network operational issues arising from the integration of distributed PV generation. Section 2 introduces the second planning tool designed to help the DSO, making the best investment for alleviating the MV-network stressed conditions. Practically, this tool aims at finding the optimal positioning and sizing of the devices designed to improve the operation of the distribution grid. Then a centralized control of these facilities is implemented in order to assess the effectiveness of the proposed approach. The simulation is carried out under various load and generation profiles, while the evaluation criteria of the methodology are the probabilities of voltage violation, the presence of congestions and the total line losses.

Keywords: Design of experiments; Dispersed generation; Distribution systems; Monte Carlo simulation; Smart metering (search for similar items in EconPapers)
JEL-codes: Q20 Q40 (search for similar items in EconPapers)
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.intechopen.com/chapters/49445 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ito:pchaps:97490

DOI: 10.5772/61758

Access Statistics for this chapter

More chapters in Chapters from IntechOpen
Bibliographic data for series maintained by Slobodan Momcilovic ().

 
Page updated 2025-04-09
Handle: RePEc:ito:pchaps:97490