Economics at your fingertips  

Using New Information Technologies for Modelling Data on Global Markets: An Efficient Interaction between "Artificial" Human Brain and Economics

Alper Ozun ()

A chapter in Proceedings of the International Conference on Human and Economic Resources, 2006, pp 349-359 from Izmir University of Economics

Abstract: Recent development of information technologies and telecommunications have given rise to an extraordinary increase in the data transactions in the financial markets. In large and transparent markets, with lower transactions and information costs, financial participants react more rapidly to changes in the profitability of their assets, and in their perception of the risks of the different financial instruments. In this respect, if the rapidity of reaction of financial players is the main feature of globalized markets, then only advanced information technologies, which uses data resources efficiently are capable of reflecting these complex nature of financial markets. The aim of this paper is to show how the new information technologies affect modelling of financial markets and decisions by using limited data resources within an intelligent system. By using intelligent information systems, mainly neural networks, this paper tries to show how the the limited economic data can be used for efficient economic decisions in the global financial markets. Advances in microprocessors and software technologies make it possible to enable the development of increasingly powerful systems at reasonable costs. The new technologies have created artificial systems, which imitate people’s brain for efficient analysis of economic data. According to Hertz, Krogh and Palmer (1991), artificial neural networks which have a similar structure of the brain consist of nodes passing activation signals to each other. Within the nodes, if incoming activation signals from the others are combined some of the nodes will produce an activation signal modified by a connection weight between it and the node to which it is linked. By using financial data from international foreign exchange markets, namely daily time series of EUR/USD parity, and by employing certain neural network algorithms, it has showed that new information technologies have advantages on efficient usage of limited economic data in modeling. By investigating the “artificial” works on modeling of international financial markets, this paper is tried to show how limited information in the markets can be used for efficient economic decisions. By investigating certain neural networks algorithms, the paper displays how artificial neural networks have been used for efficient economic modeling and decisions in global F/X markets. New information technologies have many advantages over statistics methods in terms of efficient data modeling. They are capable of analyzing complex patterns quickly and with a high degree of accuracy. Since, “artificial” information systems do not make any assumptions about the nature of the distribution of the data, they are not biased in their analysis. By using different neural network algorithms, the economic data can be modeled in an efficient way. Especially if the markets are non-linear and complex, the intelligent systems are more powerful on explaining the market behavior in the chaotic environments. With more advanced information technologies, in the future, it will be possible to model all the complexity of the economic life. New researches in the future need a more strong interaction between economics and computer science.

Keywords: neural networks; knowledge; information technology; communication technology (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link) (application/pdf)
Our link check indicates that this URL is bad, the error code is: 500 Can't connect to (Bad file descriptor) ( [302 Found]-->

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this chapter

More chapters in Papers of the Annual IUE-SUNY Cortland Conference in Economics from Izmir University of Economics Contact information at EDIRC.
Bibliographic data for series maintained by Ayla Ogus Binatli ().

Page updated 2021-06-17
Handle: RePEc:izm:prcdng:200628