EconPapers    
Economics at your fingertips  
 

Industry Efficiency Analysis

Jati Sengupta and Chiranjib Neogi
Additional contact information
Jati Sengupta: University of California
Chiranjib Neogi: Indian Statistical Institute

Chapter 4 in India’s New Economy, 2009, pp 104-133 from Palgrave Macmillan

Abstract: Abstract The characterization and estimation of productive efficiency of an industry have followed three stages of development over the past decade. One is the parametric theory, whereby a production or cost frontier is estimated by assuming a composed error model with two components of error: one measuring technical inefficiency, the other indicating purely random components. The method of nonlinear maximum likelihood (ML) is then applied. The second is the data envelopment analysis (DEA), which employs the basic notion of Pareto efficiency of economic theory by stipulating that a given firm (or decision-making unit (DMU)) is not efficient in producing its outputs from given inputs, if it can be shown that some other DMU or combination of DMUs can produce more of some outputs without utilizing more of any input. This DEA technique is sometimes called nonparametric or semiparametric, since it does not postulate any functional form of the production or cost frontier. In order to obtain reliable estimates of the production frontier, one may adopt smoothing methods and outlier rejection techniques for the observed data on inputs and outputs and then apply the DEA method to estimate the production or cost frontiers. The third approach to industry efficiency analysis is designed to improve the efficiency scores of the DEA model by incorporating various methods of error reduction, e.g. the bootstrap methods rescale the individual efficiency scores using average efficiencies calculated from different subsets of the data. Another approach is to apply the method of least sum of absolute errors (LAV) to the production or cost function and derive the estimates of the respective frontiers.

Keywords: Data Envelopment Analysis; Efficiency Score; Data Envelopment Analysis Model; Production Frontier; Generalize Little Square (search for similar items in EconPapers)
Date: 2009
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pal:palchp:978-0-230-22824-5_4

Ordering information: This item can be ordered from
http://www.palgrave.com/9780230228245

DOI: 10.1057/9780230228245_4

Access Statistics for this chapter

More chapters in Palgrave Macmillan Books from Palgrave Macmillan
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:pal:palchp:978-0-230-22824-5_4