EconPapers    
Economics at your fingertips  
 

Sequential Precision of Predictions in Models of Economic Growth

Andrey A. Krasovskii () and Alexander M. Tarasyev ()
Additional contact information
Andrey A. Krasovskii: Ural Branch Russian Academy of Sciences
Alexander M. Tarasyev: Ural Branch Russian Academy of Sciences

A chapter in Dynamic Systems, Economic Growth, and the Environment, 2010, pp 23-43 from Springer

Abstract: Abstract The research deals with the model of economic growth based on the real time series. The methodology for analysis of a country’s macroeconomic parameters is proposed. A distinguishing feature of the approach is that real data is analyzed not by direct statistical approximations but through formalization of the process in terms of optimal control theory. The econometric analysis is used only at the stage of calibration of initial parameters of the model. This feature helps to analyze the dynamism in growth of economic factors which drive the economic growth. The study is focused on the gross domestic product (GDP) of a country. There are three production factors in the model: capital, labor and useful work. Several production functions (Cobb-Douglas, modifications of LINEX) are implemented in the model to express the relationship between factors of production and the quantity of output produced. The problem of investments optimization is solved using the version of the Pontryagin maximum principle, elements of the qualitative theory of differential equations and methods of differential games. Numerical algorithm is proposed for constructing synthetic trajectories of economic growth. Numerical experiments are fulfilled via elaborated software. For verification of the proposed approach several model modifications and case studies are presented. By means of comparison of obtained model trajectories with real data one can judge on the forecasting capacity of the model. As time goes by real data is collected and can be compared to forecast. At some stage it is necessary to make the forecast more precise. Using the data updates one restarts the model from the very beginning. Based on the model restart the new forecast is obtained which makes the previous one more accurate. Extensive simulations are done which realized the suggested methodology. They show that based on several data updates a series of forecasting trajectories demonstrate sequential precision of predictions property. Numerical results are based on real data for economies of US, UK, and Japan.

Keywords: Economic Growth; Gross Domestic Product; Real Data; Production Function; Hamiltonian System (search for similar items in EconPapers)
Date: 2010
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:dymchp:978-3-642-02132-9_2

Ordering information: This item can be ordered from
http://www.springer.com/9783642021329

DOI: 10.1007/978-3-642-02132-9_2

Access Statistics for this chapter

More chapters in Dynamic Modeling and Econometrics in Economics and Finance from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:dymchp:978-3-642-02132-9_2