EconPapers    
Economics at your fingertips  
 

A Tutorial on Hierarchical Lossless Data Compression

John C. Kieffer
Additional contact information
John C. Kieffer: University of Minnesota

Chapter Chapter 28 in Modeling Uncertainty, 2002, pp 711-733 from Springer

Abstract: Abstract Hierarchical lossless data compression is a compression technique that has been shown to effectively compress data in the face of uncertainty concerning a proper probabilistic model for the data. In this technique, one represents a data sequence x using one of three kinds of structures: (1) a tree called a pointer tree, which generates x via a procedure called “subtree copying”; (2) a data flow graph which generates x via a flow of data sequences along its edges; or (3) a contextfree grammar which generates x via parallel substitutions accomplished with the production rules of the grammar. The data sequence is then compressed indirectly via compression of the structure which represents it. This article is a survey of recent advances in the rapidly growing field of hierarchical lossless data compression. In the article, we illustrate how the three distinct structures for representing a data sequence are equivalent, outline a simple method for designing compact structures for re presenting a data sequence, and indicate the level of compression performance that can be obtained by compression of the structure representing a data sequence.

Keywords: Production Rule; Compression Scheme; Compression Performance; Incoming Edge; Pointer Tree (search for similar items in EconPapers)
Date: 2002
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-0-306-48102-4_28

Ordering information: This item can be ordered from
http://www.springer.com/9780306481024

DOI: 10.1007/0-306-48102-2_28

Access Statistics for this chapter

More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:isochp:978-0-306-48102-4_28