Generation of Synthetic Sequences of Electricity Demand with Applications
J. W. Boland
Additional contact information
J. W. Boland: University of South Australia, Mawson Lakes Boulevard, Mawson Lakes
Chapter Chapter 10 in Uncertainty and Environmental Decision Making, 2009, pp 275-314 from Springer
Abstract:
Abstract We have developed a model to generate synthetic sequences of half hourly electricity demand. The generated sequences represent possible realisations of electricity load that can have occurred. Each of the components included in the model has a physical interpretation. These components are yearly and daily seasonality which were modelled using Fourier series, weekly seasonality modelled with dummy variables, and the relationship with current temperature described by polynomial functions of temperature. Finally the stochastic componentwas modelled with ARMA processes. The temperature series was modelled in a similar fashion. The stochastic modelling was performed to build probability distributions of the outputs to calculate probabilistic forecasts.As one application several summers of half hourly electricity demand were generated and from them the value of demand that is not expected to be exceeded more than once in ten years was calculated. Additionally, the bivariate temperature and demand model was used in software designed to optimise the orientation of photovoltaic cells to match demand.
Keywords: Half hourly electricity demand; Fourier series; Multiple regression; ARMA; Stochastic modelling (search for similar items in EconPapers)
Date: 2009
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-1-4419-1129-2_10
Ordering information: This item can be ordered from
http://www.springer.com/9781441911292
DOI: 10.1007/978-1-4419-1129-2_10
Access Statistics for this chapter
More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().