Modeling Uncertainty in a Large scale integrated Energy-Climate Model
Maryse Labriet (),
Richard Loulou () and
Amit Kanudia ()
Additional contact information
Maryse Labriet: KANLO and CIEMAT
Richard Loulou: KANLO, GERAD, and McGill University
Amit Kanudia: KanORS
Chapter Chapter 2 in Uncertainty and Environmental Decision Making, 2009, pp 51-77 from Springer
Abstract:
Abstract The well-known method of stochastic programming in extensive form is used on the large scale, partial equilibrium, technology rich global 15-region TIMES Integrated Assessment Model (ETSAP-TIAM), to assess climate policies in a very uncertain world. The main uncertainties considered are those of the Climate Sensitivity parameter, and of the rate of economic development. In this research, we argue that the stochastic programming approach is well adapted to the treatment of major uncertainties, in spite of the limitation inherent to this technique due to increased model size when many outcomes are modeled. The main advantage of the approach is to obtain a single hedging strategy while uncertainty prevails, contrary to classical scenario analysis. Furthermore, the hedging strategy has the very desirable property of attenuating the (in)famous ’razor edge‘ effect of Linear Programming, and thus to propose a more robust mix of technologies to attain the desired climate target. Although the examples treated use the classical expected cost criterion, the paper also presents, and argues in favor of, altering this criterion to introduce risk considerations, by means of a linearized semi-variance term, or by using the Savage criterion. Risk considerations are arguably even more important in situations where the random events are of a ’one-shot‘ nature and involve large costs or payoffs, as is the case in the modeling of global climate strategies. The article presents methodological details of the modeling approach, and uses realistic instances of the ETSAP-TIAM model to illustrate the technique and to analyze the resulting hedging strategies. The instances modeled and analyzed assume several alternative global temperature targets ranging from less than 2°C to 3°C. The 2.5°C target is analyzed in some more details. The paper makes a distinction between random events that induce anticipatory actions, and those that do not. The first type of event deserves full treatment via stochastic programming, while the second may be treated via ordinary sensitivity analysis. The distinction between the two types of event is not always straightforward, and often requires experimentation via trial-and-error. Some examples of such sensitivity analyses are provided as part of the TIAM application.
Keywords: Energy modeling; Uncertainty; Stochastic programming; Hedging strategies; Climate policies; Technology. (search for similar items in EconPapers)
Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (1)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-1-4419-1129-2_2
Ordering information: This item can be ordered from
http://www.springer.com/9781441911292
DOI: 10.1007/978-1-4419-1129-2_2
Access Statistics for this chapter
More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().