EconPapers    
Economics at your fingertips  
 

The G/M/1 Queueing System

Moshe Haviv
Additional contact information
Moshe Haviv: The Hebrew University

Chapter Chapter 7 in Queues, 2013, pp 99-105 from Springer

Abstract: Abstract Consider a first-come first-served single-server queue. Assume that service requirements are independent and follow an identical exponential distribution with a parameter μ. This assumption implies that during a (not necessarily continuous) period of time of length t, the number of customers possibly served by the server has a Poisson distribution with parameter μt. The reason we use the term “possibly” is that in practice what can happen is that during that period or part of it, the system might be empty and hence, although service is ready to be provided, there is no one there to enjoy it. One more thing to observe here is that if one stops the clock when the server is idle, then the departure process under the new clock is a Poisson process. As always, the interarrival times have some continuous distribution with a density function denoted here by g(t) for t ≥ 0 and that they are independent. In other words, the arrivals form a renewal process. Finally, we assume independence between the arrival and the service processes.

Keywords: Identical Exponential Distributions; Interarrival Time; Departure Process; Exponential Waiting-time; Arrival Time Residuals (search for similar items in EconPapers)
Date: 2013
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-1-4614-6765-6_7

Ordering information: This item can be ordered from
http://www.springer.com/9781461467656

DOI: 10.1007/978-1-4614-6765-6_7

Access Statistics for this chapter

More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:isochp:978-1-4614-6765-6_7