Games with a Continuum of Strategies
Alan Washburn
Additional contact information
Alan Washburn: Naval Postgraduate School
Chapter Chapter 5 in Two-Person Zero-Sum Games, 2014, pp 83-106 from Springer
Abstract:
Abstract It is not unusual to encounter games where the number of available pure strategies is infinite. Any game where the two players each select a time for action is an example, or a submarine can dive to any depth up to some maximum limit. Intervals of real numbers can of course be artificially subdivided to make the number of strategies finite, but that is merely an approximation technique. Sometimes it may even be enlightening to approximate a subdivided interval by a continuous one. The radio frequency spectrum, for example, contains only finitely many frequencies as far as modern digital receivers are concerned, but there are so many frequencies that for some purposes one might as well think of the spectrum as being continuous. In this chapter we consider games where the choice of strategy is not limited to a finite set.
Keywords: Encounter Games; Silent Duel; Logistics Game; Discrete Games; Optimal Pure Strategy (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-1-4614-9050-0_5
Ordering information: This item can be ordered from
http://www.springer.com/9781461490500
DOI: 10.1007/978-1-4614-9050-0_5
Access Statistics for this chapter
More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().