DEA Based Benchmarking Models
Joe Zhu ()
Additional contact information
Joe Zhu: Worcester Polytechnic Institute
Chapter 10 in Data Envelopment Analysis, 2015, pp 291-308 from Springer
Abstract:
Abstract Data envelopment analysis (DEA) is a methodology for identifying the efficient or best-practice frontier of decision making units (DMUs). It is required that all DMUs under consideration be evaluated against each other in a same pool. Adding or deleting an inefficient DMU does not alter the efficient frontier and the efficiencies of the existing DMUs. The inefficiency scores change only if the efficient frontier is altered. Benchmarking is the process of comparing a DMU’s performance to the best practices formed by a set of DMUs. DEA is also called “balanced benchmarking”, because DEA considers multiple performance metrics in a single model. Under such a notion, the best practices are the benchmarks identified by DEA. However, in a more general sense, best practices do not have to be identified by DEA—they can be existing “standards”. This chapter presents two DEA-based benchmarking approaches where one set of DMUs is compared (or benchmarked) against another. One approach is called “context-dependent” DEA where a set of DMUs is evaluated against a particular evaluation context. Each evaluation context represents an efficient frontier composed by DMUs in a specific performance level. The context-dependent DEA measures the attractiveness and the progress when DMUs exhibiting poorer and better performance are chosen as the evaluation context, respectively. The other approach consists of a fixed benchmark model and a variable benchmark model where each (new) DMU is evaluated against a set of given benchmarks (standards).
Keywords: Data Envelopment Analysis (DEA); Attractiveness; Progress; Best practice; Context-dependent; Benchmarking (search for similar items in EconPapers)
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (4)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-1-4899-7553-9_10
Ordering information: This item can be ordered from
http://www.springer.com/9781489975539
DOI: 10.1007/978-1-4899-7553-9_10
Access Statistics for this chapter
More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().