Integer Location Problems
Anita Schöbel ()
Additional contact information
Anita Schöbel: Technical University Kaiserslautern
Chapter Chapter 5 in Contributions to Location Analysis, 2019, pp 125-145 from Springer
Abstract:
Abstract The goal of this paper is to introduce integer location problems. These are continuous location problems in which we look for a new facility with integer coordinates. We motivate why research on integer location problems is useful and sketch an application within robust optimization. We then analyze the structure of optimal integer locations: We identify integer location problems for which a finite dominating set can be constructed and we identify cases in which the integer problem can be solved by rounding the solution of the corresponding continuous location problem. We finally propose a geometric branch-and-bound procedure for solving integer location problems.
Date: 2019
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-3-030-19111-5_5
Ordering information: This item can be ordered from
http://www.springer.com/9783030191115
DOI: 10.1007/978-3-030-19111-5_5
Access Statistics for this chapter
More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().