EconPapers    
Economics at your fingertips  
 

Identification of Congestion in DEA

Mahmood Mehdiloo (), Biresh Sahoo () and Joe Zhu ()
Additional contact information
Mahmood Mehdiloo: University of Mohaghegh Ardabili
Joe Zhu: Worcester Polytechnic Institute

Chapter Chapter 4 in Data Science and Productivity Analytics, 2020, pp 83-119 from Springer

Abstract: Abstract Productivity is a common descriptive measure for characterizing the resource-utilization performance of a production unit, or decision making unit (DMU). The challenge of improving productivity is closely related to a particular form of congestion, which reflects waste (overuse) of input resources at the production unit level. Specifically, the productivity of a production unit can be improved not only by reducing some of its inputs but also simultaneously by increasing some of its outputs, when such input congestion is present. There is thus a need first for identifying the presence of congestion, and then for developing congestion-treatment strategies to enhance productivity by reducing the input wastes and the output shortfalls associated with such congestion. Data envelopment analysis (DEA) has been considered a very effective method in evaluating input congestion. Because the assumption of strong input disposability precludes congestion, it should not be incorporated into the axiomatic modeling of the true technology involving congestion. Given this fact, we first develop a production technology in this contribution by imposing no input disposability assumption. Then we define both weak and strong forms of congestion based on this technology. Although our definitions are made initially for the output-efficient DMUs, they are well extended in the sequel for the output-inefficient DMUs. We also propose in this contribution a method for identifying congestion. The essential tool for devising this method is the technique of finding a maximal element of a non-negative polyhedral set. To our knowledge, our method is the only reliable method for precisely detecting both weak and strong forms of congestion. This method is computationally more efficient than the other congestion-identification methods developed in the literature. This is due to the fact that, unlike the others, our method involves solving a single linear program. Unlike the other methods, the proposed method also deals effectively with the presence of negative data, and with the occurrence of multiple projections for the output-inefficient DMUs. Based on our theoretical results, three computational algorithms are developed for testing the congestion of any finite-size sample of observed DMUs. The superiority of these algorithms over the other congestion-identification methods is demonstrated using four numerical examples, one of which is newly introduced in this contribution.

Keywords: Production technology; Congestion; Data envelopment analysis; Negative data; Multiple projections; Maximal element (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-3-030-43384-0_4

Ordering information: This item can be ordered from
http://www.springer.com/9783030433840

DOI: 10.1007/978-3-030-43384-0_4

Access Statistics for this chapter

More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:isochp:978-3-030-43384-0_4