Scientific Method for Health Risk Analysis: The Example of Fine Particulate Matter Air Pollution and COVID-19 Mortality Risk
Louis Anthony Cox
Additional contact information
Louis Anthony Cox: Cox Associates and University of Colorado
Chapter Chapter 1 in Quantitative Risk Analysis of Air Pollution Health Effects, 2021, pp 3-26 from Springer
Abstract:
Abstract Applied science is largely about how to use observations to learn, express, and verify predictive generalizations—causal laws stating that if certain antecedent conditions hold, then certain consequences will follow. Non-deterministic or incompletely known causal laws may only determine conditional probabilities or occurrence rates for consequences from known conditions (Spirtes 2010). For example, different exposure concentrations of air pollution might cause different mortality incidence rates or age-specific hazard rates for people with different values of causally relevant covariates. A defining characteristic of sound science is that causal laws and their predictions are formulated and expressed unambiguously, using clear operational definitions, so that they can be independently tested and verified by others and empirically confirmed, refuted, or refined as needed using new data as it becomes available. Comparing unambiguous predictions to observations (using statistics if the predictions are probabilistic) determines the extent to which they are empirically supported. The authority of valid scientific conclusions rests on their testability, potential falsifiability, and empirically demonstrated predictive validity when tested. Using new data to constantly question, test, verify, and if necessary correct and refine previous predictive generalizations, and wider theories and networks of assumptions into which they may fit, is a hallmark of sound science. Its practical benefit in risk analysis is better understanding of what truly protects people, and what does not—for example, the unexpected discovery that administering retinol and beta carotene to subjects at risk of lung cancer increased risk instead of decreasing it (Omenn et al. 1996; Goodman et al. 2004).
Date: 2021
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-3-030-57358-4_1
Ordering information: This item can be ordered from
http://www.springer.com/9783030573584
DOI: 10.1007/978-3-030-57358-4_1
Access Statistics for this chapter
More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().