An Introduction to Data Envelopment Analysis
Alireza Amirteimoori,
Biresh Sahoo (),
Vincent Charles and
Saber Mehdizadeh ()
Additional contact information
Alireza Amirteimoori: Rasht Branch, Islamic Azad University
Vincent Charles: Pontifical Catholic University of Peru
Saber Mehdizadeh: Rasht Branch, Islamic Azad University
Chapter Chapter 2 in Stochastic Benchmarking, 2022, pp 13-29 from Springer
Abstract:
Abstract Following the seminal work of Farrell (1957), Charnes et al. (1978) introduced DEA as a deterministic and nonparametric efficiency evaluation tool. DEA is a linear programming-based technique that has been widely accepted as a competing methodology to evaluate the relative efficiency of entities or decision-making units, DMUs (Charles et al., 2016, 2018; Tsolas et al., 2020). DEA is a data-oriented technique (Zhu, 2020) that is used to construct an empirical production frontier to measure efficiency. Note that the original DEA program of Charnes et al. (1978) is based on the CRS specification of technology and is used to measure the technical and scale efficiency of DMUs. However, Banker et al. (1984) extended this program to the case of VRS to estimate purely technical efficiency. Over the past three decades, DEA has been widely used to evaluate the relative efficiency of production firms, the nature of the returns-to-scale, and the productivity changes. The DEA literature has seen a wide variety of applications across a plethora of domains, having become a powerful management science tool (Charles et al., 2018). In this chapter, we briefly review the fundamental concepts in DEA, along with the basic technologies and programs.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-3-030-89869-4_2
Ordering information: This item can be ordered from
http://www.springer.com/9783030898694
DOI: 10.1007/978-3-030-89869-4_2
Access Statistics for this chapter
More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().