EconPapers    
Economics at your fingertips  
 

On Confident Outrankings with Uncertain Criteria Significance Weights

Raymond Bisdorff

Chapter Chapter 18 in Algorithmic Decision Making with Python Resources, 2022, pp 251-260 from Springer

Abstract: Abstract When modelling preferences following the outranking approach, the signs of the majority margins do sharply distribute validation and invalidation of pairwise outranking situations. How can we be confident in the resulting outranking digraph, when we acknowledge the usual imprecise knowledge of criteria significance weights coupled with small majority margins? In this chapter we propose to link the qualifying significance majority with a required α%-confidence level. We model therefore the significance weights as random variables following more or less widespread distributions around an average significance value that corresponds to the given deterministic weight. As the bipolar-valued random credibility of an outranking statement hence results from the simple sum of positive or negative independent random variables, we may apply the Central Limit Theorem (CLT) for computing the bipolar likelihood that the expected majority margin will indeed be positive and, respectively, negative.

Date: 2022
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-3-030-90928-4_18

Ordering information: This item can be ordered from
http://www.springer.com/9783030909284

DOI: 10.1007/978-3-030-90928-4_18

Access Statistics for this chapter

More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:isochp:978-3-030-90928-4_18