Introduction
Daniel P. McGibney
Additional contact information
Daniel P. McGibney: University of Miami
Chapter Chapter 1 in Applied Linear Regression for Business Analytics with R, 2023, pp 1-5 from Springer
Abstract:
Abstract Business analytics uses modern computing methods to report, enhance, and provide insights into modern businesses. Regression analysis does these actions through data by predicting unknown values, assessing differences among groups, and checking the relationships among variables. When regression analysis is applied to the right data set in the right way, the results can make businesses extremely profitable, whether the objective is predicting the sale price of houses, assessing marketing methods, or predicting the number of likes on a social media post. This book has countless applications of business examples where regression analysis produces valuable insights. This chapter begins with a discussion of the history of regression analysis and its role in data science, machine learning, and artificial intelligence (AI). Also, we will provide an overview of each of the eight case studies in this book. These cases offer detailed analyses of how to use regression analysis to obtain actionable business findings.
Date: 2023
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-3-031-21480-6_1
Ordering information: This item can be ordered from
http://www.springer.com/9783031214806
DOI: 10.1007/978-3-031-21480-6_1
Access Statistics for this chapter
More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().