Supporting Judgment in Predictive Analytics: Scenarios and Judgmental Forecasts
Dilek Önkal (),
M. Sinan Gönül and
Paul Goodwin
Additional contact information
Dilek Önkal: Northumbria University
M. Sinan Gönül: Northumbria University
Paul Goodwin: University of Bath
Chapter Chapter 9 in Judgment in Predictive Analytics, 2023, pp 245-264 from Springer
Abstract:
Abstract Despite advances in predictive analytics there is much evidence that algorithm-based forecasts are often subject to judgmental adjustments or overrides. This chapter explores the role of scenarios in supporting the role of judgment when algorithmic (or model-based) forecasts are available. Scenarios provide powerful narratives in envisioning alternative futures and play an important role in both planning for uncertainties and challenging managerial thinking. Through offering structured storylines of plausible futures, scenarios may also enhance forecasting agility and offer collaborative pathways for information sharing. Even though the potential value of using scenarios to complement judgmental forecasts has been recognized, the empirical work remains scarce. A review of the relevant research suggests the merit of supplying scenarios to judgmental forecasters is mixed and can result in an underestimation of the extent of uncertainty associated with forecasts, but a greater acceptance of model-based point predictions. These findings are generally supported by the results of a behavioral experiment that we report. This study was used to examine the effects of scenario tone and extremity on individual and group-based judgmental predictions when a model-based forecast was available. The implications of our findings are discussed with respect to (i) eliciting judgmental forecasts using different predictive formats, (ii) sharing scenarios with varying levels of optimism and pessimism, and (iii) incorporating scenario approaches to address forecast uncertainty.
Keywords: Scenario; Judgment; Forecast; Uncertainty (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-3-031-30085-1_9
Ordering information: This item can be ordered from
http://www.springer.com/9783031300851
DOI: 10.1007/978-3-031-30085-1_9
Access Statistics for this chapter
More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().