EconPapers    
Economics at your fingertips  
 

Causally Explainable Decision Recommendations Using Causal Artificial Intelligence

Louis Anthony Cox
Additional contact information
Louis Anthony Cox: Cox Associates and University of Colorado

Chapter Chapter 9 in AI-ML for Decision and Risk Analysis, 2023, pp 273-316 from Springer

Abstract: Abstract For an AI agent to make trustworthy decision recommendations under uncertainty on behalf of human principals, it should be able to explain why its recommended decisions make preferred outcomes more likely and what risks they entail. Such rationales use causal models to link potential courses of action to resulting outcome probabilities. They reflect an understanding of possible actions, preferred outcomes, effects of action on outcome probabilities, and acceptable risks and trade-offs—the standard ingredients of normative theories of decision-making under uncertainty, such as expected utility theory. Competent AI advisory systems should also notice changes that might affect a user’s plans and goals. In response, they should apply both learned patterns for quick response (analogous to fast, intuitive “System 1” decision-making in human psychology) and also slower causal inference and simulation, decision optimization, and planning algorithms (analogous to deliberative “System 2” decision-making in human psychology) to decide how best to respond to changing conditions. Concepts of conditional independence, conditional probability tables (CPTs) or models, causality, heuristic search for optimal plans, uncertainty reduction, and value of information (VoI) provide a rich, principled framework for recognizing and responding to relevant changes and features of decision problems via both learned and calculated responses. This chapter reviews how these and related concepts can be used to identify probabilistic causal dependencies among variables, detect changes that matter for achieving goals, represent them efficiently to support responses on multiple time scales, and evaluate and update causal models and plans in light of new data. The resulting causally explainable decisions make efficient use of available information to achieve goals in uncertain environments.

Keywords: Bayesian networks; Explainable AI (XAI); Causality; Decision analysis; Explainable AI; Explanation; Information; Partially observable Markov decision processes; Reinforcement learning; Stochastic control (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-3-031-32013-2_9

Ordering information: This item can be ordered from
http://www.springer.com/9783031320132

DOI: 10.1007/978-3-031-32013-2_9

Access Statistics for this chapter

More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:isochp:978-3-031-32013-2_9