EconPapers    
Economics at your fingertips  
 

Being Green on Sulphur: Targets, Measures and Side-Effects

Christos A. Kontovas (), George Panagakos (), Harilaos N. Psaraftis () and Eirini Stamatopoulou ()
Additional contact information
Christos A. Kontovas: Technical University of Denmark
George Panagakos: Technical University of Denmark
Harilaos N. Psaraftis: Technical University of Denmark
Eirini Stamatopoulou: National Technical University of Athens

Chapter Chapter 10 in Green Transportation Logistics, 2016, pp 351-386 from Springer

Abstract: Abstract Green House Gas (GHG) emissions are not the only emissions of concern to the international transport community. SOx emissions are non-GHG emissions that are caused by the presence of sulphur in the fuel. As the maximum percentage of sulphur in automotive and aviation fuels is strictly regulated in most countries around the world, much of the attention in recent years has focused on maritime transport. The attention mainly stems from the fact that in marine fuels the percentage of sulphur can be very high: it can be as high as 4.5 % in Heavy Fuel Oil (HFO), which is the fuel typically used in all deep-sea trades. Even though the amounts of SOx produced by ships are substantially lower than CO2, SOx emissions are highly undesirable as they cause acid rain and undesirable health effects in humans and animals. To mitigate these adverse environmental effects, the international shipping community has taken substantial policy measures. With the introduction of new limits for the content of sulphur in marine fuels in Northern European and North American sea areas, short-sea companies operating in these areas will face substantial additional cost. As of 1/1/2015, international regulations stipulate, among other things, a 0.1 % limit in the sulphur content of marine fuels, or equivalent measures limiting the percent of SOx emissions to the same amount. As low-sulphur fuel is substantially more expensive than HFO, there is little or no room within these companies current margins to absorb such additional cost, and thus significant price increases must be expected. Unlike its deep-sea counterpart, in short-sea shipping such a freight rate increase may induce shippers to use land-based alternatives (mainly road). A reverse shift of cargo would go against the EU policy to shift traffic from land to sea to reduce congestion, and might ultimately (under certain circumstances) increase the overall level of CO2 emissions along the entire supply chain. The purpose of this chapter is to investigate the potential effect of sulphur regulations on the share of cargo transported by the waterborne mode vis-à-vis land-based alternatives.

Keywords: Basic Scenario; International Maritime Organization; Modal Shift; Freight Rate; Total Fuel Consumption (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (3)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-3-319-17175-3_10

Ordering information: This item can be ordered from
http://www.springer.com/9783319171753

DOI: 10.1007/978-3-319-17175-3_10

Access Statistics for this chapter

More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:isochp:978-3-319-17175-3_10