Heuristics for Portfolio Selection
Manfred Gilli () and
Enrico Schumann
Additional contact information
Manfred Gilli: University of Geneva and Swiss Finance Institute
Chapter Chapter 10 in Optimal Financial Decision Making under Uncertainty, 2017, pp 225-253 from Springer
Abstract:
Abstract Portfolio selection is about combining assets such that investors’ financial goals and needs are best satisfied. When operators and academics translate this actual problem into optimisation models, they face two restrictions: the models need to be empirically meaningful, and the models need to be soluble. This chapter will focus on the second restriction. Many optimisation models are difficult to solve because they have multiple local optima or are ‘badly-behaved’ in other ways. But on modern computers such models can still be handled, through so-called heuristics. To motivate the use of heuristic techniques in finance, we present examples from portfolio selection in which standard optimisation methods fail. We then outline the principles by which heuristics work. To make that discussion more concrete, we describe a simple but effective optimisation technique called Threshold Accepting and how it can be used for constructing portfolios. We also summarise the results of an empirical study on hedge-fund replication.
Keywords: Portfolio optimisation; Heuristics; Financial modelling; Model risk; Model errors; Hedge fund replication (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-3-319-41613-7_10
Ordering information: This item can be ordered from
http://www.springer.com/9783319416137
DOI: 10.1007/978-3-319-41613-7_10
Access Statistics for this chapter
More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().