Introduction to R
Peeyush Taori () and
Hemanth Kumar Dasararaju
Additional contact information
Peeyush Taori: London Business School
Hemanth Kumar Dasararaju: Indian School of Business
Chapter Chapter 28 in Essentials of Business Analytics, 2019, pp 889-915 from Springer
Abstract:
Abstract As data science adoption increases more in the industry, the demand for data scientists has been increasing at an astonishing pace. Data scientists are a rare breed of “unicorns” who are required to be omniscient, and, according to popular culture, a data scientist is someone who knows more statistics than a programmer and more programming than a statistician. One of the most important tools in a data scientist’s toolkit is the knowledge of a general-purpose programming language that enables a data scientist to perform tasks of data cleaning, data manipulation, and statistical analysis with ease. Such requirements call for programming languages that are easy enough to learn and yet powerful enough to accomplish complex coding tasks. Two such de facto programming languages for data science used in the industry and academia are Python and R.
Date: 2019
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-3-319-68837-4_28
Ordering information: This item can be ordered from
http://www.springer.com/9783319688374
DOI: 10.1007/978-3-319-68837-4_28
Access Statistics for this chapter
More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().