EconPapers    
Economics at your fingertips  
 

Machine Learning and Artificial Intelligence for Agricultural Economics

Chandrasekar Vuppalapati ()
Additional contact information
Chandrasekar Vuppalapati: San Jose State University

in International Series in Operations Research and Management Science from Springer, currently edited by Camille C. Price, Joe Zhu and Frederick S. Hillier

Date: 2021
ISBN: 978-3-030-77485-1
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Chapters in this book:

Ch Chapter 1 Introduction
Chandrasekar Vuppalapati
Ch Chapter 2 Data Engineering and Exploratory Data Analysis Techniques
Chandrasekar Vuppalapati
Ch Chapter 3 Agricultural Economy and ML Models
Chandrasekar Vuppalapati
Ch Chapter 4 Commodity Markets: Machine Learning Techniques
Chandrasekar Vuppalapati
Ch Chapter 5 Weather Patterns and Machine Learning
Chandrasekar Vuppalapati
Ch Chapter 6 Agriculture Employment and the Role of AI in Improving Productivity
Chandrasekar Vuppalapati
Ch Chapter 7 The Role of the Government and the AI Readiness
Chandrasekar Vuppalapati
Ch Chapter 8 Future
Chandrasekar Vuppalapati

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:isorms:978-3-030-77485-1

Ordering information: This item can be ordered from
http://www.springer.com/9783030774851

DOI: 10.1007/978-3-030-77485-1

Access Statistics for this book

More books in International Series in Operations Research and Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:isorms:978-3-030-77485-1