EconPapers    
Economics at your fingertips  
 

On Utilizing Infeasibility in Multiobjective Evolutionary Algorithms

Thomas Hanne ()
Additional contact information
Thomas Hanne: University of Applied Sciences Northwestern Switzerland

A chapter in Multiobjective Programming and Goal Programming, 2009, pp 113-122 from Springer

Abstract: Abstract In this article, we consider the problem of infeasible solutions (i.e. solutions which violate one or several restrictions of an optimization problem) which can hardly be avoided when new solutions are generated by stochastic and other means during the run of an optimization algorithm. Since typical approaches for dealing with infeasibility such as using a repair mechanism, a punishment approach, or a simple recalculation of solutions are not fully satisfying in many problems, we suggest a new approach of tolerating and actively using infeasible solutions within the framework of multiobjective evolutionary algorithms. The novel evolutionary algorithm allows solving a multiobjective optimization problem (MOP) with continuous variables by approximating the efficient set. The algorithm uses populations of variable size and new rules for selecting solutions for the subsequent generations. In particular, some of the selected solutions may be infeasible such that the Pareto front is approached at the same time from two “sides”, the feasible set and a subset of the infeasible set. Since the considered in feasible solutions correspond to a dual optimization problem, we call the new algorithm primal—dual multiobjective optimization algorithm, or PDMOEA. The algorithm is demonstrated by considering a numerical test problem and is compared with two other approaches for dealing with infeasibility. The example shows a specific strength of the new approach: By tunneling through infeasible regions, the population may more easily extent to new separated parts of the Pareto set.

Keywords: Constrained optimization; Efficient set; Evolutionary algorithms; Feasibility; Multiobjective optimization (search for similar items in EconPapers)
Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (1)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:lnechp:978-3-540-85646-7_11

Ordering information: This item can be ordered from
http://www.springer.com/9783540856467

DOI: 10.1007/978-3-540-85646-7_11

Access Statistics for this chapter

More chapters in Lecture Notes in Economics and Mathematical Systems from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:lnechp:978-3-540-85646-7_11