Expected Total Cost Minimum Design of Plane Frames by Means of Stochastic Linear Programming Methods
Kurt Marti ()
Additional contact information
Kurt Marti: Federal Armed Forces University Munich
Chapter Chapter 8 in Coping with Uncertainty, 2010, pp 163-192 from Springer
Abstract:
Abstract Yield stresses, allowable stresses, moment capacities (plastic moments with respect to compression, tension and rotation), applied loadings, cost factors, manufacturing errors, etc., are not given fixed quantities in structural analysis and optimal design problems, but must be modeled as random variables with a certain joint probability distribution. Problems from plastic analysis and optimal plastic design are based on the convex yield (feasibility) criterion and the linear equilibrium equation for the stress (state) vector. After the formulation of the basic mechanical conditions including the relevant material strength parameters and load components as well as the involved design variables (as, e.g., sizing variables) for plane frames, several approximations are considered: (1) approximation of the convex yield (feasible) domain by means of convex polyhedrons (piecewise linearization of the yield domain); (2) treatment of symmetric and non symmetric yield stresses with respect to compression and tension; (3) approximation of the yield condition by using given reference capacities. As a result, for the survival of plane frames a certain system of necessary and/or sufficient linear equalities and inequalities is obtained. Evaluating the recourse costs, i.e., the costs for violations of the survival condition by means of piecewise linear convex cost functions, a linear program is derived for the minimization of the total costs including weight-, volume- or more general initial (construction) costs. Appropriate cost factors are given. Considering then the expected total costs from construction as well as from possible structural damages or failures, a stochastic linear optimization problem (SLP) is obtained. Finally, discretization of the probability distribution of the random parameter vector yields a (large scale) linear program (LP) having a special structure. For LP’s of this type numerous, very efficient LP-solvers are available – also for the solution of very large scale problems.
Keywords: Moment Capacity; Robust Optimal Design; Stochastic Optimization Problem; Plane Frame; Failure Cost (search for similar items in EconPapers)
Date: 2010
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:lnechp:978-3-642-03735-1_8
Ordering information: This item can be ordered from
http://www.springer.com/9783642037351
DOI: 10.1007/978-3-642-03735-1_8
Access Statistics for this chapter
More chapters in Lecture Notes in Economics and Mathematical Systems from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().