EconPapers    
Economics at your fingertips  
 

Modeling and Forecasting Gas Network Flows with Multivariate Time Series and Mathematical Programming Approach

Nazgul Zakiyeva () and Milena Petkovic ()
Additional contact information
Nazgul Zakiyeva: Zuse Institute Berlin
Milena Petkovic: Zuse Institute Berlin

A chapter in Operations Research Proceedings 2021, 2022, pp 200-205 from Springer

Abstract: Abstract With annual consumption of approx. 95 billion cubic meters and similar amounts of gas just transshipped through Germany to other EU states, Germany’s gas transport system plays a vital role in European energy supply. The complex, more than 40,000 km long high-pressure transmission network is controlled by several transmission system operators (TSOs) whose main task is to provide security of supply in a cost-efficient way. Given the slow speed of gas flows through the gas transmission network pipelines, it has been an essential task for the gas network operators to enhance the forecast tools to build an accurate and effective gas flow prediction model for the whole network. By incorporating the recent progress in mathematical programming and time series modeling, we aim to model natural gas network and predict gas in- and out-flows at multiple supply and demand nodes for different forecasting horizons. Our model is able to describe the dynamics in the network by detecting the key nodes, which may help to build an optimal management strategy for transmission system operators.

Keywords: Forecasting; Mathematical programming; Natural gas (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:lnopch:978-3-031-08623-6_31

Ordering information: This item can be ordered from
http://www.springer.com/9783031086236

DOI: 10.1007/978-3-031-08623-6_31

Access Statistics for this chapter

More chapters in Lecture Notes in Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:lnopch:978-3-031-08623-6_31