EconPapers    
Economics at your fingertips  
 

Computational Linear Bilevel Optimization

Thomas Kleinert ()
Additional contact information
Thomas Kleinert: Friedrich-Alexander Universität Erlangen-Nürnberg, Discrete Optimization

Chapter Chapter 2 in Operations Research Proceedings 2022, 2023, pp 11-17 from Springer

Abstract: Abstract In this article, we summarize a subset of the findings of the cumulative dissertation “Algorithms for Mixed-Integer Bilevel Problems with Convex Followers”; see [4]. First, we present a result that renders the application of the well-known and widely used big-M reformulation of linear bilevel problems infeasible for many practical applications. Second, we present valid inequalities and demonstrate that an SOS1-based approach is a competitive alternative to the error-prone big-M method in case both approaches are equipped with these valid inequalities. Third, we introduce a penalty alternating direction method, which computes (close-to-)optimal feasible points in extremely short computation times and outperforms a state-of-the-art local method.

Keywords: Bilevel optimization; Computational optimization; Mixed-integer programming (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:lnopch:978-3-031-24907-5_2

Ordering information: This item can be ordered from
http://www.springer.com/9783031249075

DOI: 10.1007/978-3-031-24907-5_2

Access Statistics for this chapter

More chapters in Lecture Notes in Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:lnopch:978-3-031-24907-5_2