EconPapers    
Economics at your fingertips  
 

Thick Data Analytics for Small Training Samples Using Siamese Neural Network and Image Augmentation

Jinan Fiaidhi (), Darien Sawyer () and Sabah Mohammed ()
Additional contact information
Jinan Fiaidhi: Lakehead University
Darien Sawyer: Lakehead University
Sabah Mohammed: Lakehead University

A chapter in LISS 2021, 2022, pp 57-66 from Springer

Abstract: Abstract Although machine learning and deep learning has provided solutions and effective predictions to a variety of complex tasks, it requires to be trained with large amount of labeled data in order to make the learning models perform with high accuracy. In many applications such as in healthcare and medical imaging, collecting big amount of data is sometimes not feasible. Thick data analytics is an attempt to solve this challenge by incorporating additional qualitative interventions such as involving expert’s heuristics to annotate and augment the training data. In this article, we are embarking on an investigation to involve the heuristics of a human radiologist in identifying COVID-19 few cases of CT-Scans imaging through the use of groups of image annotation and augmentation techniques. The identification of new COVID-19 is carried out utilizing unique structure Siamese network to rank similarity between new COVID-19 CT Scan images and images determined as COVID provided by the radiologist. The Siamese network extracts the features of the augmented images compared to the new CT-Scan image to determine whether the new image is COVID-19 positive using a similarity ratio. The results show that the proposed model of using the augmentation heuristics trained on small dataset outperforms the advanced models that are trained on datasets containing large numbers of samples. This article starts by answering key questions on why we need CT-Scans for COVID-19 diagnosis and what is the notion of Thick Data and the use of image augmentation as heuristics as well as what is the role of Siamese Neural Network in learning from small samples. Based on answering these questions, the analytics method described in this paper will have better justification.

Keywords: Thick data analytics; Image annotation and augmentation; Siamese neural network; COVID-19 CT-scan imaging; Few shot learning (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:lnopch:978-981-16-8656-6_6

Ordering information: This item can be ordered from
http://www.springer.com/9789811686566

DOI: 10.1007/978-981-16-8656-6_6

Access Statistics for this chapter

More chapters in Lecture Notes in Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:lnopch:978-981-16-8656-6_6