EconPapers    
Economics at your fingertips  
 

On a Class of Interval Data Minmax Regret CO Problems

Alfredo Candia-Véjar () and Eduardo Álvarez-Miranda ()
Additional contact information
Alfredo Candia-Véjar: Universidad de Talca
Eduardo Álvarez-Miranda: Universidad de Talca

A chapter in Operations Research Proceedings 2007, 2008, pp 123-128 from Springer

Abstract: Abstract Some remarks about the Kasperski and Zielinski approximation algorithm for a class of interval data minmax regret combinatorial optimization problems (Algorithm K&Z) are presented. These remarks help to give a better understanding of both the design of the algorithm and its possible applications.

Keywords: Approximation algorithm; minmax regret; interval data (search for similar items in EconPapers)
Date: 2008
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:oprchp:978-3-540-77903-2_19

Ordering information: This item can be ordered from
http://www.springer.com/9783540779032

DOI: 10.1007/978-3-540-77903-2_19

Access Statistics for this chapter

More chapters in Operations Research Proceedings from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:oprchp:978-3-540-77903-2_19