Data-Driven Capacity Management with Machine Learning: A Novel Approach and a Case-Study for a Public Service Office
Fabian Taigel (),
Jan Meller and
Alexander Rothkopf
Additional contact information
Fabian Taigel: Universitaet Wuerzburg
Jan Meller: Universitaet Wuerzburg
Alexander Rothkopf: Massachusetts Institute of Technology
A chapter in Advances in Service Science, 2019, pp 105-115 from Springer
Abstract:
Abstract In this paper we consider the case of a public service office in Germany that provides services such as handling passports and ID card applications, notifications of change of addresses, etc. Their decision problem is to determine the staffing level for a specific staffing time-slot (e.g., next Monday, 8 am–12.30 pm). Required capacity is driven by features such as the day of the week, whether the day is in school vacations, etc. We present an innovative data-driven approach to prescribe capacities that does not require any assumptions about the underlying arrival process. We show how to integrate specific service goals (e.g., “At most 20% of the customers should have to wait more than 20 min”) into a machine learning (ML) algorithm to learn a functional relationship between features and prescribed capacity from historical data. We analyze the performance of our integrated approach on a real-world dataset and compare it to a sequential approach that first uses out-of-the-box ML to predict arrival rates and subsequently determines the according capacity using queuing models. We find that both data-driven approaches can significantly improve the performance compared to a naive benchmark and discuss benefits and drawbacks of our approach.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:prbchp:978-3-030-04726-9_11
Ordering information: This item can be ordered from
http://www.springer.com/9783030047269
DOI: 10.1007/978-3-030-04726-9_11
Access Statistics for this chapter
More chapters in Springer Proceedings in Business and Economics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().