Cleaning and Processing on the Electric Vehicle Telematics Data
Shuai Sun (),
Jun Bi and
Cong Ding
Additional contact information
Shuai Sun: Beijing Jiaotong University
Jun Bi: Beijing Jiaotong University
Cong Ding: Beijing Jiaotong University
A chapter in Smart Service Systems, Operations Management, and Analytics, 2020, pp 1-6 from Springer
Abstract:
Abstract The development of the Internet of VehiclesInternet of Vehicles (IoV) (IoV) enables companies to collect an increasing amount of telematics dataTelematics data , which creates plenty of new business opportunities. How to improve the integrity and precision of electric vehicle telematics data to effectively support the operation and management of vehicles is one of the thorniest problems in the electric vehicle industry. With the purpose of accurately collecting and calculating the driving mileage of electric vehicles, a series of data cleaning and processingData cleaning and processing methodologies were conducted on the real-world electric vehicle telematics data. More specifically, descriptive statistics was conducted on the data, and the statistical results showed the quality of the data in general. Above all, the driving mileage data were segmented according to the rotate speed of the electric motor, and the anomaly threshold of the driving mileage data was obtained by the box-plot methodBox-plot method . Then, the typical anomalies in the data were screened out by the threshold and analysed, respectively. Ultimately, the real-time and offline abnormal processing algorithms are designed to process real-time and offline data, respectively. After debugging and improvement, these two sets of abnormal processing algorithms we designed have been able to run on a company’s big data cloud platform. According to the feedback of the operation results of real-world massive data, the two sets of algorithms can effectively improve the statistical accuracy of driving mileage data of electric vehicle.
Keywords: Internet of Vehicles; Telematics data; Data cleaning and processing; Box-plot method (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:prbchp:978-3-030-30967-1_1
Ordering information: This item can be ordered from
http://www.springer.com/9783030309671
DOI: 10.1007/978-3-030-30967-1_1
Access Statistics for this chapter
More chapters in Springer Proceedings in Business and Economics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().