Construction of Investment Strategies for WIG20, DAX and Stoxx600 with Random Forest Algorithm
Grzegorz Tratkowski ()
Additional contact information
Grzegorz Tratkowski: Wrocław University of Economics and Business
A chapter in Contemporary Trends and Challenges in Finance, 2020, pp 179-188 from Springer
Abstract:
Abstract Machine learning provides powerful tools for data analysis, especially in regression and classification problems what may be used in creation of investment strategies. This paper present an efficient way of utilization of one of the machine learning algorithms on examples of stock indices: Stoxx600, WIG20 and DAX. This work concentrates on time series analysis of stock indices with Random Forest algorithm to create investment strategies based on future probabilities of declines and upswings. Taking into account some macroeconomic characteristics, technical indicators and consensus estimates, the models are trained to provide a buy signal if the output probability is above a specific threshold and sell signal in case of the opposite situation. The examination of the strategies efficiency indicates the differences in determinants among chosen stock indices.
Date: 2020
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:prbchp:978-3-030-43078-8_15
Ordering information: This item can be ordered from
http://www.springer.com/9783030430788
DOI: 10.1007/978-3-030-43078-8_15
Access Statistics for this chapter
More chapters in Springer Proceedings in Business and Economics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().