Unemployment Prediction in UK by Using a Feedforward Multilayer Perceptron
Georgios N. Kouziokas
A chapter in Operational Research in the Digital Era – ICT Challenges, 2019, pp 65-74 from Springer
Abstract:
Abstract Artificial intelligence has been applied in many scientific fields the last years with the development of new neural network technologies and machine learning techniques. In this research, artificial neural networks are implemented for developing prediction models in order to forecast unemployment. A Feedforward Neural Network architecture was applied, since it is considered as the most suitable in times series predictions. The best artificial neural network forecasting model was evaluated by testing different network topologies regarding the number of the neurons, the number of the hidden layers, and also the nature of the transfer functions in the hidden layers. Several socioeconomic factors were investigated in order to be taken into consideration so as to construct the optimal neural network based forecasting model. The results have shown a very good prediction accuracy regarding the unemployment. The proposed methodology can be very helpful to the authorities in adopting proactive measures for preventing further increase of unemployment which would cause a negative impact on the society.
Keywords: Artificial intelligence; Economic development; Neural networks; Public administration; Unemployment (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:prbchp:978-3-319-95666-4_5
Ordering information: This item can be ordered from
http://www.springer.com/9783319956664
DOI: 10.1007/978-3-319-95666-4_5
Access Statistics for this chapter
More chapters in Springer Proceedings in Business and Economics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().