EconPapers    
Economics at your fingertips  
 

An Interval Partitioning Approach for Continuous Constrained Optimization

Chandra Sekhar Pedamallu (), Linet Özdamar () and Tibor Csendes ()
Additional contact information
Chandra Sekhar Pedamallu: Nanyang Technological University
Linet Özdamar: Izmir Ekonomi Universitesi
Tibor Csendes: University of Szeged

A chapter in Models and Algorithms for Global Optimization, 2007, pp 73-96 from Springer

Abstract: Summary Constrained Optimization Problems (COP’s) are encountered in many scientific fields concerned with industrial applications such as kinematics, chemical process optimization, molecular design, etc. When non-linear relationships among variables are defined by problem constraints resulting in non-convex feasible sets, the problem of identifying feasible solutions may become very hard. Consequently, finding the location of the global optimum in the COP is more difficult as compared to bound-constrained global optimization problems. This chapter proposes a new interval partitioning method for solving the COP. The proposed approach involves a new subdivision direction selection method as well as an adaptive search tree framework where nodes (boxes defining different variable domains) are explored using a restricted hybrid depth-first and best-first branching strategy. This hybrid approach is also used for activating local search in boxes with the aim of identifying different feasible stationary points. The proposed search tree management approach improves the convergence speed of the interval partitioning method that is also supported by the new parallel subdivision direction selection rule (used in selecting the variables to be partitioned in a given box). This rule targets directly the uncertainty degrees of constraints (with respect to feasibility) and the uncertainty degree of the objective function (with respect to optimality). Reducing these uncertainties as such results in the early and reliable detection of infeasible and sub-optimal boxes, thereby diminishing the number of boxes to be assessed. Consequently, chances of identifying local stationary points during the early stages of the search increase. The effectiveness of the proposed interval partitioning algorithm is illustrated on several practical application problems and compared with professional commercial local and global solvers. Empirical results show that the presented new approach is as good as available COP solvers.

Keywords: continuous constrained optimization; interval partitioning approach; practical applications (search for similar items in EconPapers)
Date: 2007
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-0-387-36721-7_5

Ordering information: This item can be ordered from
http://www.springer.com/9780387367217

DOI: 10.1007/978-0-387-36721-7_5

Access Statistics for this chapter

More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:spochp:978-0-387-36721-7_5