Precision Farming, Myth or Reality: Selected Case Studies from Mississippi Cotton Fields
Jeffrey L. Willers,
Eric Jallas,
James M. McKinion,
Michael R. Seal and
Sam Turner
Additional contact information
Jeffrey L. Willers: USDA-ARS-Genetics and Precision Agriculture Research Unit
A chapter in Advances in Modeling Agricultural Systems, 2009, pp 243-272 from Springer
Abstract:
Abstract There is a lot of interest in the concept of precision farming, also called precision agriculture or site-specific management. Although the total acreage managed by these concepts is increasing worldwide each year, there are several limitations and constraints that must be resolved to sustain this increase. These include (1) collecting and managing the large amounts of information necessary to accomplish this micromanagement, (2) building and delivering geo-referenced fine-scale (i.e., change every few meters or less) prescriptions in a timely manner, (3) finding or developing agricultural machines capable of quickly and simultaneously altering the rates of one or more agri-chemicals applied to the crop according to a geo-referenced prescription, (4) the need to have personnel stay “current” with advancements in developing technologies and adapting them to agriculture, (5) refining existing and/or creating new analytical theories useful in agriculture within a multidisciplinary, multi-institutional, and multibusiness environment of cooperation, and (6) modification of agricultural practices that enhances environmental conservation and/or stewardship while complying with governmental regulations and facing difficult economic constraints to remain profitable. There are many myths that overshadow the realities and obscure the true possibilities of precision agriculture. Considerations to establish productive linkages between the diverse sources of information and equipment necessary to apply site-specific practices and geographically monitor yield are daunting. It is anticipated that simulation models and other decision support systems will play key roles in integrating tasks involved with precision agriculture. Discovering how to connect models or other software systems to the hardware technologies of precision agriculture, while demonstrating their reliability and managing the flows of information among components, is a major challenge. The close cooperation of the extension, industrial, production, and research sectors of agriculture will be required to resolve this constraint.
Keywords: Geographical Information System; Precision Agriculture; Global Position System Receiver; Geographical Information System Software; Broadcast Treatment (search for similar items in EconPapers)
Date: 2009
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-0-387-75181-8_12
Ordering information: This item can be ordered from
http://www.springer.com/9780387751818
DOI: 10.1007/978-0-387-75181-8_12
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().