Methodological Framework for EEG Feature Selection Based on Spectral and Temporal Profiles
Vangelis Sakkalis () and
Michalis Zervakis ()
Additional contact information
Vangelis Sakkalis: Technical University of Crete
Michalis Zervakis: Technical University of Crete
Chapter Chapter 3 in Computational Neuroscience, 2010, pp 43-56 from Springer
Abstract:
Abstract Among the various frameworks in which EEG signal analysis has been traditionally formulated, the most widely studied is employing power spectrum measures as functions of certain brain pathologies or increased cerebral engagement. Such measures may form signal features capable of characterizing and differentiating the underlying neural activity. The objective of this chapter is to validate the use of wavelets in extracting such features in the time–scale domain and evaluate them in a simulated environment assuming two tasks (control and target) that resemble widely used scenarios of assessing and quantifying complex cognitive functions or pathologies. The motivation for this work stems from the ability of time–frequency features to encapsulate significant power alteration of EEG in time, thus characterizing the brain response in terms of both spectral and temporal activation. In the presented algorithmic scenario, brain areas’ electrodes of significant activation during the target task are extracted using time-averaged wavelet power spectrum estimation. Then, a refinement step makes use of statistical significance-based criteria for comparing wavelet power spectra between the target task and the control condition. The results indicate the ability of the proposed methodological framework to correctly identify and select the most prominent channels in terms of “activity encapsulation,” which are thought to be the most significant ones.
Keywords: Wavelet Transform; Morlet Wavelet; Target Task; Wavelet Power Spectrum; Feature Selection Step (search for similar items in EconPapers)
Date: 2010
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-0-387-88630-5_3
Ordering information: This item can be ordered from
http://www.springer.com/9780387886305
DOI: 10.1007/978-0-387-88630-5_3
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().