Optimal Motions of Multibody Systems in Resistive Media
Felix L. Chernousko ()
Additional contact information
Felix L. Chernousko: Russian Academy of Sciences
Chapter Chapter 7 in Variational Analysis and Aerospace Engineering, 2009, pp 107-126 from Springer
Abstract:
Abstract It is well known that a body containing internal masses can move in a resistive medium, if the internal masses perform oscillations relative to the body. In this chapter, progressive motions of a body carrying movable internal masses are considered for various resistance forces acting upon the body. The cases of linear and quadratic resistance as well as Coulomb’s dry friction forces, both isotropic and anisotropic, are analyzed. Special classes of periodic motions of the internal masses are considered under constraints imposed on relative displacements, velocities, and accelerations of these masses. Optimal parameters of the relative internal motions are determined that correspond to the maximal average speed of the system as a whole. Results of the computer simulation and experimental data confirm the obtained theoretical results. The principle of motion analyzed in this chapter can be used for mobile robots, especially mini-robots, moving in tubes, in aggressive media, and in complex environment.
Date: 2009
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-0-387-95857-6_7
Ordering information: This item can be ordered from
http://www.springer.com/9780387958576
DOI: 10.1007/978-0-387-95857-6_7
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().