Arbitrarily Slow Convergence of Sequences of Linear Operators: A Survey
Frank Deutsch () and
Hein Hundal
Additional contact information
Frank Deutsch: Penn State University
Chapter Chapter 11 in Fixed-Point Algorithms for Inverse Problems in Science and Engineering, 2011, pp 213-242 from Springer
Abstract:
Abstract This is a survey (without proofs except for verifying a few new facts) of the slowest possible rate of convergence of a sequence of linear operators that converges pointwise to a linear operator. A sequence of linear operators (L n ) is said to converge to a linear operator Larbitrarily slowly (resp., almost arbitrarily slowly) provided that (L n ) converges to L pointwise, and for each sequence of real numbers (ϕ(n)) converging to 0, there exists a point x = x ϕ such that $$\|{L}_{n}(x) - L(x)\| \geq \phi (n)$$ for all n (resp., for infinitely many n). Two main “lethargy” theorems are prominent in this study, and they have numerous applications. The first lethargy theorem (Theorem 11.16) characterizes almost arbitrarily slow convergence. Applications of this lethargy theorem include the fact that a large class of polynomial operators (e.g., Bernstein, Hermite–Fejer, Landau, Fejer, and Jackson operators) all converge almost arbitrarily slowly to the identity operator. Also all the classical quadrature rules (e.g., the composite Trapezoidal Rule, composite Simpson’s Rule, and Gaussian quadrature) converge almost arbitrarily slowly to the integration functional. The second lethargy theorem (Theorem 11.21) gives useful sufficient conditions that guarantee arbitrarily slow convergence. In the particular case when the sequence of linear operators is generated by the powers of a single linear operator, there is a “dichotomy” theorem (Theorem 11.27) which states that either there is linear (fast) convergence or arbitrarily slow convergence; no other type of convergence is possible. Some applications of the dichotomy theorem include generalizations and sharpening of (1) the von Neumann-Halperin cyclic projections theorem, (2) the rate of convergence for intermittently (i.e., “almost” randomly) ordered projections, and (3) a theorem of Xu and Zikatanov.
Keywords: Arbitrarily slow convergence; Higher powers of linear operators; Cyclic projections; Alternating projections; Randomly ordered projections; Intermittently ordered projections; Subspace corrections; Finite elements; Domain decomposition; Multigrid method; Rate of convergence; Bernstein polynomial operators; Hermite–Fejer operators; Landau operators; Fejer operators; Jackson operators; The Trapezoidal rule; Simpson’s rule; Gaussian quadrature (search for similar items in EconPapers)
Date: 2011
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-1-4419-9569-8_11
Ordering information: This item can be ordered from
http://www.springer.com/9781441995698
DOI: 10.1007/978-1-4419-9569-8_11
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().